SpringerMaterials
The fastest solution for identifying material properties

• Comprehensive, curated data for major materials science areas
• Save time with search options optimized for materials science
• Enhanced data visualization and analysis options
Quick and reliable insights accelerating materials science research

As the amount of scientific information exponentially increases, the need for critically evaluated and easily retrievable data becomes ever greater. Information must be cross-linked, updated, and presented in intuitive and readily accessible ways.

SpringerMaterials effectively addresses these challenges for materials science and closely related fields in chemistry, engineering, and physics. The database is a comprehensive resource of curated data covering 3,000 properties and 290,000 materials on one platform: springer.com/springermaterials

Single platform access to curated data

Major material types

<table>
<thead>
<tr>
<th>Metals & Alloys</th>
<th>Ceramics & Glasses</th>
<th>Polymers</th>
<th>Organic Substances</th>
<th>Composites</th>
<th>Atoms & Nuclei</th>
</tr>
</thead>
</table>

Property classes include

Physical | Chemical | Thermodynamic | Electromagnetic | Structural | Mechanical | Spectroscopic | Nuclear

Data sources

- Classic Landolt-Börnstein series
- MSI Eureka, Linus Pauling Files – Inorganic Solid Phases
- Polymer Thermodynamics Database (ATHAS)
- Dortmund Databank of Separation Technology
- Springer Handbooks (e.g., VDI Heat Atlas)
- Adsorption Database, NIST Corrosion Database, SpringerMaterials Fundamentals Handbooks

<table>
<thead>
<tr>
<th>Content overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content Class</td>
</tr>
<tr>
<td>Phase Diagram Reports</td>
</tr>
<tr>
<td>Interactive Phase Diagrams</td>
</tr>
<tr>
<td>Crystal Structures</td>
</tr>
<tr>
<td>Corrosion Data</td>
</tr>
<tr>
<td>Gas Adsorption Data</td>
</tr>
<tr>
<td>Thermophysical Property Data</td>
</tr>
<tr>
<td>Polymer Thermodynamic Data</td>
</tr>
<tr>
<td>Book Content</td>
</tr>
</tbody>
</table>
As a multidisciplinary field, materials science draws on data from many topics in physics, chemistry, and engineering. Material property data, even for a single material, is often scattered across many sources. A set of workflow tools called SpringerMaterials Interactive addresses this challenge with the following features:

- Consolidation of data from multiple sources on a single graph or table
- Highly customizable data visualization options
- Side-by-side comparison of material properties
- Numerical property value search to find materials within a given property range

SpringerMaterials Interactive data is extracted primarily from the Landolt-Börnstein book series. This digitized data is then consolidated with relevant data from other sources to create these multisource data sets. Interactive data sets are highlighted on the platform with an interactive button.

SpringerMaterials – saving researchers time
Search options optimized for materials science
Interactive Views: customizable data visualization

Material Comparisons: side-by-side views of material properties

Numerical Property Search: show all materials with given property range(s)
Additional Functionality

Built-in crystal structure viewer

View interactive crystal structures from published data and create your own personalized view. Measure angles and distances, display multiple unit cells, and easily export the customized image.

Citation exporter

Citations for SpringerMaterials content can be easily exported in multiple standard formats.

Exact data points with phase diagrams

Over 40,000 interactive phase diagrams include tools to determine phase transitions and record points of interest.

*SpringerMaterials is fast. The periodic table search provides intuitive, specific data, it’s totally different from a conventional data search engine. The colorful 3-D crystal structure view not only provides direct knowledge on the bond length, bond angle, etc. but also leaves a very strong visual impression.

Prof. Jun Jiang, Chemical Physics
University of Science and Technology of China*
SpringerMaterials research benefits

A single platform covers curated data from all major topics in materials science, chemistry, physics & engineering

Take advantage of specialized integrated features to analyze, manipulate, and visualize different data types

Save time with multiple search methods and advanced result refining options

Export data in multiple formats for further use in other software/applications

Benefits for Libraries

• Increase your institution’s research productivity by offering a vast materials science database. Harnessing the scope and depth of SpringerMaterials minimizes the number of resources needing maintenance.
• Assurance that the database contains high quality curated content compiled by subject matter experts.
• SpringerMaterials is a cloud-based platform providing 24/7 concurrent access for all researchers, either onsite or through remote authentication.
• Flexible purchase options and powerful tools to monitor usage and see the return on investment.
• Accessible and optimized for both desktop and mobile devices.

Visit springer.com/springermaterials to request a trial or get more information about SpringerMaterials

A useful database should be convenient for its users, the data should be very accurate and reliable, and the results found through a search should be of high relevance. In my opinion, SpringerMaterials is doing very well in all those three aspects.

Dr. Yafong Fan, Science Librarian
University of Science and Technology of China

Availability and Access

Whatever your research needs, Springer Nature’s bespoke business models offer complete flexibility. Delivered to all types of organizations whatever their size – from small departments to consortia with multiple users across locations. Springer Nature’s sales representatives will provide you with the most suitable solution for your organization. Request your SpringerMaterials trial today.